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A New Orthodoxy in Three Parts 
The attached document is in three acts:  

• This short introduction;  
• A technical whitepaper, "A New Orthodoxy"; and  
• A weighty set of endnotes with a glossary of terms, code examples, and 

general support for "A New Orthodoxy." 
Each section is standalone, and given the length of the endnotes, it can be 
initially set aside. 
 
To provide some context. GeoAutonomy, LLC was created approximately two 
years ago by a group of professionals who successfully built companies, new 
technologies, and products that have changed modern society and created $ 
billion in value for our investors. During the last ten years, we have been 
involved with autonomy, motion management, and AI by leveraging geometric 
algebra, an up-and-coming discipline of applied mathematics and physics. 
Previously, we sold successful products and were granted patents on our 
earlier geometric algebra work. GeoAutonomy has created new patentable 
work, a significant new framework and language, and new physical products 
that address motion management, autonomy, specific AI applications, sensor 
management, flight, and other technical challenges. 
 
This "New Orthodoxy" points out a new approach that solves persistent 
problems preventing the full promise of autonomy and intelligent platforms. 
This title came about because we considered Luther's audacity in nailing his 
95 theses to the door in Wittenberg, changing world history, and our need to 
nail up our points.   
 
This document does not intend to describe GeoAutonomy's technology but 
instead is intended to stimulate deeper discussions.  
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 A New Orthodoxy 
This document intends to highlight the deficiencies in how much of autonomy 
is being implemented today. Attached are our points of geometric algebrai 
compared to the previous orthodoxy for managing motion, autonomy, and 
advanced behavior for platforms that fly, drive, dive, or swim.  
The Lucretius fallacy ii can be summarized as believing that whatever a 
person or group has experienced is the most extreme or best. In this case, the 
prevailing views of the framework for managing motion, platform autonomy, 
and behavior decisions have proceeded as if proven, often ignoring facts 
inconvenient to the current perception.  
Newtonian physics reigned exclusively until challenged by a young patent 
clerk, who had to partially create a new form of tensor math to describe 
space-timeiii. Einstein's determinism reigned supreme until it was replaced at 
the atomic level by quantum mechanics, beginning with its probabilistic young 
Turks of Bohr, Heisenberg, and Schrödinger and their uncertainty mapping. 
Dirac and Feynman used Hamiltonian mechanics to predict and later discover 
atomic components and interactions for their separate Nobel prize-winning 
work. The same W. R. Hamilton also promoted the study of quaternionsiv, the 
forerunner of the larger body of math called Geometric Algebra, sometimes 
called Clifford Algebra or simply GA (or Conformal Geometric Algebra "CGA" 
for a specific version of GA that maintains homogeneity for Euclidean space)v. 
For the last 60 years, the high priest of GA has been David Hestenes, who 
created and defined a unifying version of GA practiced by a small but growing 
group of scientists and engineers, mostly in robotics, computer graphics, 
classical and quantum physics, electrodynamics, and relativity. This work has 
permeated much of our everyday existence with a general lack of appreciation 
that it lurks "under the hood." Our team's history with GA comes from work 
associated with JPL and CalTech, drawing directly from Hestenes, which were 
initially used for navigation in deep space and now navigation/motion 
management and autonomy on Earth.  
GeoAutonomy is focused on solving fundamental problems in motion 
management, autonomy, and generalized AI. We are focused on the essential 
issues plaguing society to make the world safer and more efficient, freeing 
humanity to higher-order tasks. While we are generally considered experts on 
flight and flying platforms and related autonomy, nothing here is limited to just 
flight. 
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In this version of our Geometric Algebra Document, we point out that 
traditional approaches (the previous orthodoxy) are broken, if not wrong, and 
that there is a better way to move forward. 
Gravitation vector: 

For many platforms (UAVs specifically), the gravitational vector ('nadir' 
— pointing towards the center of mass of the Earth) is lost soon after 
the "lift-off" or, in the case of water, soon after a fixed location is left. 
While the internal navigation unit (IMU) contains all the gyroscopes and 
accelerometers to maintain this vector, it is nonetheless lost for all 
known UAV applications within seconds of take-off, requiring GPS to 
correct and sustain this vector based on a satellite fix. No GPS, no 
stable flight. Indoor flight can maintain the gravitation vector by using 
external sensors to compute "optical flow," but these techniques require 
optimal surfaces and lighting. Also, the transition from indoor to outdoor 
or vice versa is an unstable mess at best. 
These limitations are because flight (or swim) control is based on 
changing positions relative to a reference framework system. With every 
movement, a new value is obtained from the IMUs and sensor, creating 
an updated world frame of orientation. These accumulated Euler angle 
errors regarding gravity become catastrophic in seconds without some 
extra help.   
Using geometric algebra (GA), or more specifically, a well-characterized 
sub-algebra of generalized GA, there is no need for a common world 
frame, except for the unique instances that one is required, in the case 
of the gravitational vector that is rare, if ever, where all sensors (multiple 
IMUs or optical sensors) are maintained and self-contained in their own 
GA operators. Even with the cheapest IMUs, the gravitational vectors, 
sufficient for stable flight, can be maintained for over 20 minutes. For 
slightly higher-grade IMUs, this time can be significantly extended. The 
clock starts over every time there is a new landing, a GPS fix, or a new 
external reference. Since there is a common GA framework for all 
sensors (more later), all data contributes to stability without 
accumulating Euler noise.  
Besides avoiding a sea of Euler frames and their combined noise, using 
GA to maintain the gravitational vector gives way to an improved way of 
handling GPS and sensors. Instead of treating GPS as having sufficient 
satellites, GA can treat each satellite as a unique input into the GA 
fabric of computation, treating them as probabilities. If flying in a 
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warehouse with windows, even a brief peak at a few satellites can 
update the orientation model based on the statistical way the GA space 
manages orientation in its dense dimensional perspective. More 
importantly, this means no rough transition with an unstable blink from 
outdoor to indoor or vice versa. 

Immune to GPS and other sensor loss, including jamming: 
Geometric algebra offers the advantage of being 'immune to GPS loss,' 
meaning it can continue functioning even when GPS signals are 
disrupted or unavailable. For the reasons described above, using GA, 
GPS is simply a probabilistic input into the motion kinematics, managed 
in the dense multivectors of the mathematical space. Unlike almost any 
other approach, GPS is utilized, whether wholly or partially available. If 
GPS is blocked, then stability and location management by the motion 
management model are based not on the coordinate grid of the GPS 
universe but on the density and addition precision of the GA-managed 
"universe." IMU data is more precise via GA but can be updated by 
these "blinks" of updates when external sensors can be trusted and 
managed in the probabilistic dense nature of GA.  The same applies to 
inputs from other sensors, including visual, Lidar, etc. 
GPS is increasingly jammed or spoofed in battlefield situations to create 
false coordinates. A spoofing attempt can be foiled based on this 
probabilistic approach and the ability to generate assurance around 
fusing multiple sensors.vi 
 
Also detrimental to stable flight is losing a compass heading next to a 
power line, buildings with metal (inside and out), or a natural or artificial 
canyon (a downtown city with tall buildings). UAVs often fail when flying 
close to a tall structure or wall, especially reinforced concrete. This 
makes getting up close to inspect a bridge problematic (under the 
bridge is generally a no-go). Using GA as described, these restrictions 
go away.  
 

Sensor management and coordinate-free integration: 
In traditional approaches, every sensor's perspective is managed by 
forcing it into a common world frame at a relatively high frequency. 
Using GA this is mainly unnecessary since every sensor and 
perspective is uniquely preserved and maintained in its own frame 
without accumulating the noise of conversion. More specifically, a 
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common language based on GA's multivectors is created based on a 
common geometric underpinning.  
Because of the "coordinate-free" nature of GA and its ability to define 
and maintain all sensor perspectives uniquely and separately while 
calculating results without requiring a common world frame, adding 
additional sensors is a straightforward and additive process. This starkly 
contrasts the sensor and computational tsunami currently at play with 
autonomous platforms, which require dozens of additional 
computational elements with every new sensor perspective, resulting in 
extra cost, complexity, and overhead.  

 
Stability for real-world inspections: 

Because of the problems previously described with traditional 
approaches, there is an inability to hold a platform stable enough to 
gather micron-level precision, with or without additional sensors.  This 
problem is with motion-flight control systems based on traditional non-
GA methods.  The further mathematical precision obtained by these GA 
techniques, as demonstrated by the structured light scanning test 
published by EPRI (the Energy and Power Research Institute), show a 
GA-controlled UAV able to effectively gather this level of precision 
indoors without GPS or optical flow to be practically indistinguishable 
from a fixed mounted scanner (called a hand scanner in the 
report). This directly applies to extending the life of power generation 
plants, inspecting the million-plus underground electrical vaults, or 
maintaining our transportation infrastructure. Footnote required 

Rotational efficiencies: 
The design of any system interacting with the real world will require 
understanding/representing/managing the rotations (or angular 
position). Even passenger cars will need some angular management, as 
the car's orientation will depend on its linear translation and the angle at 
which its wheels are pointing. During a turn, it will travel angularly over 
an arc. In the case of a platform that flies or swims, these rotations (and 
translations) can happen in every direction. Further complicating 
matters is maintaining velocities and accelerations in these rotational 
domains. 
 
Several mathematical techniques exist for angular/rotational 
management: Euler angles, rotation matrices, quaternions, etc. Each of 
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these approaches has merits but also limitations. Rotation matrices, for 
example, specify rotations around each of the principal axes of a 
coordinate system. This approach has merit because the rotations are 
defined around the x-y-z axes and can be applied in any chosen order 
— which is relatively easy to understand/visualize. The limitations are 
that specific rotations can lead to the expression of gimbal lock and the 
requirement to maintain these rotation matrices as orthogonal (an 
additional set of computations). 
 
The use of quaternions (a sub-algebra of GA), which much of the 
aerospace industry has moved to, eliminates the possibility of gimbal 
lock. Quaternions have further merit in that a particular axis of rotation 
(outside of the three principal axes) can be chosen as desired, which 
removes the need to compose rotations. Avoiding the requirement of 
orthogonalization (as required by rotation matrix methods), rotations 
utilizing quaternions require that they are normalized in magnitude to a 
value of 1 (far less complicated than orthogonalization of a 3x3 matrix).  
 
GA expands on the merits of quaternions by retaining the benefits and 
allowing further objects to be rotated in a standard mathematical 
operation. Geometric algebras of appropriately chosen 
dimensions/signature provide simple representations of geometric 
objects (spheres, planes, lines, circles, ellipses, etc.) and the ability to 
rotate these objects around any chosen axis (in any desired plane). 
More interestingly, conformal geometric algebras allow for translations 
to be composed with rotations simultaneously and in the same notation 
as for rotations. GA rotations are simple to describe, compute, and 
manage, expressed in a single line of GA code (more on this later) 
versus the pages of equivalent code for other techniques.vii 

Coding density and hence error reduction: 
In maybe the most famous book on extensive system programming, 
Fred Brooks (program manager of the OS-360 at IBM) in the "Mythical 
Man Month" warns of drifting away from the central pillars of keeping the 
development group as small as possible, points out that your key 
contributors are an order of magnitude more productive than others, 
suggests standardizing on your essential tools and maintaining them 
internally, and further points out that there are always proofreader errors 
so limit your code size (irreducible # of errors).  
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Attached viiias an endnote is an example of a standard 3D rotation, the 
bread and butter of any motion management, including all UAVs and 
cars, written in Rust.  The first example, #1, is a traditional rotation 
matrix (SO(3)) implementation, and this code calls upon an external 
math library of 30,000 plus lines of executable code to support such 
functions. Example #2 is a rotation in GA. #2 only requires standard 
library traits found in Rust and no external libraries. Besides the 
additional precision already discussed, you can quickly see that the 
executable code is remarkably smaller and more concise (we are not 
suggesting that all 30,000 lines of the matrix math libraries are used in 
this example, but even utilizing 1% would add 300 lines of code to that 
example).  Example #3 is the main function for running and printing 
these two examples, which is provided to show that nothing is hidden.  
More importantly, #2 is written in "geometry" for geometric operations, 
precisely what a rotation is. Angles are preserved, as is noise. Consider 
how many rotations happen per second when a UAV or car drives. 
Then, consider all the angles and projections that need to be rotated.  
Other examples could be given, including translations (SE(3) — 4D 
matrix for simultaneous translation/rotation), path planning, or 
probabilities of collisions.  

Screw mechanics: 
Screw mechanics of GA enables the combination of rotational and 
translational equations of motion for a rigid body into a single equation. 
This reduces the complexity of managing all motion and its associated 
kinematics. ix 

Unified math and physics: 
Synthetic geometry is fully integrated with computational geometry, 
allowing rotational and translational operators to be handled evenly with 
the same algebraic properties.x This simplifies operations once GA is 
used as a unified mathematical framework. Related is that vectors can 
uniquely represent spheres and hyperplanes: unifying objects, their 
treatment, and physics. xi This makes autonomy based on consistent 
geometry a reality. 

Distributed processing: 
Using the standard "language" of GA, we and others have been able to 
spread the processing load across multiple processors. We have 
distributed the processes via Movidius vector processors, Nvidia GPU 
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processors, and numerous general-purpose processors. We have split 
the load between an Nvidia array running on a ground controller and the 
same flying in the air. A common unified mathematical framework based 
on a shared library, communicating in a standard "language," all based 
on GA, gives way to distributed processing and edge computing. 
This approach is light and portable and does not require an internet 
connection to cloud resources. 

Recognition benefits using multivectors: 
As Gary Marcus comments about the current wave of AI, "Deep 
Learning is just a fancy way of doing pattern recognition." Using neural 
nets, we train the system based on massive data sets, leading to 
impressive results based on leveraging these learned patterns. 
However, what is learned is often not understood, frequently called 
"fragility."  
One area of advanced recognition and training is Geometric 
Intelligence, Vector Recognition, and Vector Databases. These 
approaches would benefit significantly from the additional density of 
GA's multivectors. Furthermore, these GA-related techniques (Vector 
Recognition uses a lower-order sub-algebra compared to GA) are far 
less fragile, given that they expose how they were trained.xii This gives 
way to a more efficient way to train neural net elements.  

GA is a mathematical framework for practically everything: 
Geometry is at the heart of all autonomous problems and solutions, and 
using higher math for geometry is common sense. GA provides the 
basis for a unified mathematical "language" and framework for 
perceiving the world via sensors, understanding commands, symbolic 
and semantic reasoning, and processing. 

 
Gimbal Lock: 

Gimbal Lock has long plagued human flight, the most famous being on 
the Apollo 10 mission when a lunar lander was almost lost. While 
usually considered a mechanically related failure, it is a mathematical 
flaw of traditional 3-axis matrix control systems.  
 
Quaternions, a subalgebra of GA, alleviate the possibility of gimbal lock 
being eliminated. Thus, quaternions have found broad applications in 
aerospace applications. Geometric algebra offers a more robust and 
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generalized solution to that of Euler angles/rotation 
matrices/quaternions. 

Integrating autonomy and behavior information into the fabric of GA: 
Using the additional dimensions of GA space/math, information about 
objects in the space can be embedded and managed. Specifically, 
information that influences and predicts intentional or unintentional 
behaviors. This ability to use a unified mathematical GA framework to 
maintain and make decisions is at the heart of the future of autonomy, 
including perception and complete or partial behaviors.  In this 
case, partial behaviors mean the thin behaviors for specific 
applications. A UAV flying in a mine has a vastly different and more 
limited set of objects, symbolic and associated semantic information, 
and end behavior it has to manage, compared to a fully autonomous car 
driving in a city.  
 
GA's framework allows for assigning potentially unlimited tags, 
characteristics, and properties to objects and environments. These can 
span a wide range, from threat and physical attributes to potential paths 
and ethical/moral issues (such as a playground area). GA's strength lies 
in its ability to embed and maintain all this information in a unified 
manner, leveraging the computational advantages of GA for immediate 
access. 

Spheres, paths, and probabilities: 
Why should you use a higher-dimensional geometric algebra if your 
problem is from the 3D real world? One reason is that problems can 
often be formulated more easily and intuitively in more dimensions. One 
advantage of GA, for instance, is that points, spheres, and planes are 
easily represented as vector combinations. 
 
Historically, the case of calculating potential collision probability is not a 
simple action, nor is it easy to describe from the perspective of an 
avoidance path. GA allows the description of shapes (think paths) 
based on eclipses, spheres, and other shapes while embedding the 
physics and probabilities of the various objects and platforms. 
Intersections, reflections, translations, and projections of these objects 
are first-order simple calculations in GA. Geometric operations can be 
expressed easily in Geometric Algebra. Another feature is Duality: 
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Geometric Algebra allows for division by geometric objects. Switching to 
the dual can often transform a complex problem into a simpler one. xiii 

Geometric solutions for a geometric world: 
As simple as this statement is, it is the heart of the advantage of the GA 
approach for motion management and behavior-based autonomy. 
Commands, behavior, objects, and their properties are expressed in a 
standard and unified way. A common mathematical framework and 
desired mission outcomes are the vocabularies of all levels of the 
system (we call the two levels of our system the Framework for Multi-
dimensional Motion "FMM" and Motion Behavioral Language "MBL").  
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EndNotes 
 
i A Glossary  
Basis 
In Euclidean space, a set of mutually orthogonal vectors such that any point in the space is 
uniquely expressible in terms of those vectors. 
 
Clifford signature 
Denotes a geometric algebra with a pair or triplet of parameters (p, q) or (p, q, r) and the number 
system used for magnitudes. “p” indicates the number of basis vectors used which square to a 
value of +1, while “r” gives the number of basis vectors which square to a value of negative 1. If 
the third term (r) is used, it represents the number of vectors which square to zero  (these would 
be similar to the epsilons used for taking limits in calculus). In this document, the number system 
used is the real numbers, as opposed to complex or quaternionic numbers. 
 The closest Clifford algebra to familiar 3-dimensional space is Cl3,0(ℝ),	while the most 
commonly used Conformal geometric algebra (often called simply “4,1” by practitioners) uses a 
total of five basis vectors, and may be notated using a G or CG instead of C:  G4,1(ℝ).	This 
emphasizes the distinction between Clifford and Conformal GAs. Whereas in Clifford Algebra, 
many algebraic manipulations are possible, many of the expressions which can be generated 
would be meaningless in CGA. In CGA, one is careful not to attempt constructing entities by 
combining blades of differing grades. Each entity consists of a single blade or sum of blades 
within the same grade (see CGA blade chart in document footnotes for an example). Rather than 
being a constructive process, CGA decomposes a general algebraic expression into terms of 
matching grades, arriving at the appropriate implied geometric entities, their orientation, and 
their locations if required.		
There are many Clifford and Conformal geometric algebras in use or being researched, and other 
variations of notations are possible. 
In this paper, we do not use the mathematical definitions of Clifford and Conformal geometric 
algebras (invoking Quadratic Forms, etc.), because that would require a greater degree of 
technical sophistication than required for our main arguments.  
 
Commutative 
The property that an operation has the same result regardless of the order in which the operands 
are combined. In ordinary multiplication, a x b = b x a. This is not true for anticommutative 
operations, where, generally, a x b = - b x a. 
 
Conformal map 
A mapping which preserves angles at all scales and also preserves shapes on a small scale. 
Distortions may emerge in some conformal mappings as one zooms out.  
Example: the Mercator map projection. Although the Mercator World map has familiar wild 
distortions of Greenland and Antarctica’s areas, any straight line drawn on this map represents an 
actual compass bearing. Also, shapes are nearly correct for small areas, and more so for areas 
near the equator.  
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In the example created below using the exponential function, notice that a square grid is 
converted to a circular sector. The overall distortion is considerable, yet all the grid intersections 
remain as right angles, and on a small scale (within each grid, say) the shape distortion is 
minimal. The left red line on the original space converts to the inner red arc on the mapped side. 
 

 
 
Dirac matrices 
A set of matrices, also called the gamma matrices, used in quantum physics, that are connected 
to the Clifford algebra notated as Cl1,3(ℝ). They appear in the famous Dirac Equation. 
 
Euler angles 
Used to denote the orientation of an object with respect to a fixed coordinate system. In three 
dimensions, any rotation of an object can be described using three angles each of which are 
rotations about a particular axis. They can also represent a varying frame of reference, such as 
that of a moving vehicle. Used in physics, linear algebra, and applied geometry. Attributed to 
Leonhard Euler. 
 
Gimbal  
A rigid frame or ring in which an object is supported by pivots. Two such rings mounted on axes 
at right angles to each other allow an object such as a ship’s compass to remain suspended in a 
horizontal plane between them regardless of any motion of its support. 
 
Group 
In mathematics, a group is a set of elements combined with an operation involving any two 
elements of the set, usually some form of addition, having an identity element, which 
corresponds to a “zero”, and such that every element has an inverse, meaning that an element 
combined with its inverse results in the identity. 
Example: The position of the hour hand on a clock can represent a group. In this group modular 
arithmetic would be used. For example, in going past 12,  11 + 5 = 4, as there is no 16.  
Each element has an inverse, e.g. the inverse of 9 is 3:  9 + 3 = 12 = 0.  
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Rotations form a group. 
 
Isomorphism 
 A one-to-one correspondence between the elements of two sets such that the result of an 
operation on one set corresponds to the result of the analogous result of an operation on their 
images in the other set. 
Example: All (Western) chess sets are isomorphic. The pieces can be matched up one for one 
between medieval sets, typical Staunton design sets, and geometric-themed Man Ray sets, and, 
also importantly, they correspondingly move the same way on a chessboard. 
 
Orthogonal  
Carries forward the literary meaning of very different or unrelated, so that in statistics it means 
uncorrelated, and vector math it means lying at or intersecting at right angles (or perpendicular). 
However, “perpendicular” implies two dimensions or perhaps three, whereas orthogonality is not 
limited to what we can visualize. 
 It can also refer to a square matrix with the special property that if it is multiplied by its 
transpose, the result is the Identity matrix. The notation for this property is: Q-1 = QT. 
The set of all n × n orthogonal matrices forms a group called the Orthogonal Group. The set of 
all n × n orthogonal matrices with determinants that have the value 1 is a subgroup of the 
orthogonal group called the Special Orthogonal Group. The orthogonal group is denoted O(n) 
and the special orthogonal group is denoted SO(n). The groups O(n) and SO(n) have several 
important physical applications, including the description of rotations. 
 
Orthogonalization 
The process of finding a set of orthogonal vectors that span a particular space. This is an 
important issue in computing, as there are several methods, each with its own advantages and 
drawbacks. 
 
Pauli matrices 
The Pauli matrices are a set of simple 2 x 2 matrices containing complex numbers, in which 
operations between them are equivalent to quaternion operations. They are ubiquitous in 
quantum mechanics, and are most commonly associated with electron spin and the “Pauli 
Exclusion Principle”, but also play a role in quantum optics and quantum computing. 
 
Projective geometry 
The study of how the geometric properties of a figure are altered by projection. There is a one-to-
one correspondence between points in a figure and points in its projected image, but often the 
ratios of lengths will be changed. In central projection for example, a triangle maps into a 
triangle and a quadrilateral into a quadrilateral, but the sides and angles may change. 
 
Quantum mechanics  
The theory that governs the behavior of particles at the atomic and sub-atomic level. It bears the 
same relationship to Newtonian mechanics as wave optics does to geometrical optics. It is the 
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foundation of all quantum physics, and includes quantum field theory, quantum chemistry, and 
quantum information science.  
A relatively simple manifestation of quantum mechanics is that electrons release or absorb 
photons (the smallest particles of light) of only certain distinct wavelengths when they jump 
from one orbital to another in an atom, and there are no in-between states. This phenomenon is 
observable as absorption lines in the sun’s spectrum, which is not consistent with classical 
physics. This does not invalidate classical physics, which works quite well at the macroscopic 
level. One can consider that the summation of super-numerous microscopic quantum processes 
result in the easily observed macro phenomena of classical physics. 
 
Quaternion 
Generalized complex numbers whose discovery (1843) is credited to William Rowan Hamilton, 
although their existence was first put in print in all but name by the French mathematician and 
social reformer Olinde Rodrigues in 1840.  A quaternion is of the form a + bi + cj + dk, where i2 
= j2 = k2 = –1 and ij = –ji = k and a, b, c, d are real numbers. A striking feature of quaternions is 
that multiplication is not commutative. They have applications in the study of the rotations of 
rigid bodies in space, and are known to present advantages such as avoidance of gimbal lock. 
 
Radius  
The distance from the center of a circle to any point on its circumference or from the center of a 
sphere to its surface. In polar coordinates, a radius r (distance from a fixed origin) is used with 
angular position θ to specify the positions of points. 
 
 Rotation group 
 The group consisting of the set of all possible rotations about an axis. This group is a continuous 
group, i.e. it has an infinite number of members. The rotation group in two dimensions has the 
property that the concatenation of rotations can be accomplished in any order giving the same 
final position. However, the rotation group in three dimensions does not. In physical systems the 
rotation group is closely associated with the angular momentum of the system. There are many 
applications of the rotation group in the quantum theory of atoms, molecules, and atomic nuclei. 
 
Sandwich operator 
A pair of operators which perform an operation on the left and on the right of a mathematical 
expression. In the case of quaternion rotation, each operator performs a reflection in opposite 
directions, resulting in a rotation. 
 
SE(3)  
Special Euclidean Group in three dimensions. It is used in mathematics, robotics, and computer 
graphics to describe and manipulate both position and orientation in familiar 3-dimensional 
space. It employs “homogeneous coordinates” which require a particular matrix representation.  
 
Special orthogonal group  
The set of all n × n orthogonal matrices with determinants that have the value 1 is a subgroup of 
the orthogonal group called the Special Orthogonal Group. 
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Tensor 
 A mathematical entity that is a generalization of a vector. Tensors are used to describe how all 
the components of a quantity in an n-dimensional system behave under certain transformations, 
just as a vector can describe a translation from one point to another in a plane or in space. 
 
Translation  
The moving of a geometrical figure so that only its position relative to fixed axes is changed, but 
not its orientation, size, or shape.  
 
Unit vector  
A vector with a magnitude of one unit.  
 
Vector 
A measure in which direction is important and must usually be specified. For instance, 
displacement is a vector quantity, whereas distance is a scalar. Weight, velocity, and magnetic 
field strength are other examples of vectors – they are each quoted as a number with a unit and a 
direction. Vectors are often denoted by printing the symbol in bold font. Vector algebra treats 
vectors symbolically in a similar way to the algebra of scalar quantities but with different rules 
for addition, subtraction, multiplication, etc. Any vector can be represented in terms of 
component vectors. In particular, a vector in three-dimensional Cartesian coordinates can be 
represented in terms of three unit vector components i, j, and k directed along the x-, y-, and z-
axes respectively. In Geometric Algebra and its sub-algebras, i, j, and k are often reserved for the 
components of a quaternion, and the x-, y-, z-axis unit vectors are typically labeled e1, e2, and e3. 
_______________ 

ii In Antifragile, Nassim Taleb writes: 
Indeed, our bodies discover probabilities in a very sophisticated manner and assess risks much 
better than our intellects do. To take one example, risk management professionals look in the 
past for information on the so-called worst-case scenario and use it to estimate future risks – this 
method is called “stress testing.” They take the worst historical recession, the worst war, the 
worst historical move in interest rates, or the worst point in unemployment as an exact estimate 
for the worst future outcome. But they never notice the following inconsistency: this so-called 
worst-case event, when it happened, exceeded the worst [known] case at the time. 
I have called this mental defect the Lucretius problem, after the Latin poetic philosopher who 
wrote that the fool believes that the tallest mountain in the world will be equal to the tallest one 
he has observed. We consider the biggest object of any kind that we have seen in our lives or 
hear about as the largest item that can possibly exist. And we have been doing this for millennia. 
 

Taleb brings up an interesting point, which is that our documented history can 
blind us. All we know is what we have been able to record. There is an uncertainty 
that we don’t seem to grasp. 
 

https://fs.blog/intellectual-giants/nassim-taleb/
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We think because we have sophisticated data collecting techniques that we can 
capture all the data necessary to make decisions. We think we can use our current 
statistical techniques to draw historical trends using historical data without 
acknowledging the fact that past data recorders had fewer tools to capture the dark 
figure of unreported data. We also overestimate the validity of what has been 
recorded before, and thus the trends we draw might tell a different story if we had 
the dark figure of unreported data. 
Taleb continues: 
The same can be seen in the Fukushima nuclear reactor, which experienced a catastrophic failure 
in 2011 when a tsunami struck. It had been built to withstand the worst past historical 
earthquake, with the builders not imagining much worse— and not thinking that the worst past 
event had to be a surprise, as it had no precedent. Likewise, the former chairman of the Federal 
Reserve, Fragilista Doctor Alan Greenspan, in his apology to Congress offered the classic “It 
never happened before.” Well, nature, unlike Fragilista Greenspan, prepares for what has not 
happened before, assuming worse harm is possible. 
____________ 
 
iii Albert Einstein was not a mathematician per se, but he is responsible for what is known as the 
Einstein tensor notation, notable for its brevity, used in his successful theory of gravitation (He 
and Feynman both grasped that the history of mathematics is largely a series of improvements in 
notation). Einstein's modification of Newtonian physics turns up in many places as a “relativistic 
correction factor”, but relativity did not alter the idea of a deterministic universe. 
____________ 
 
iv The quaternion is a three-dimensional analog of complex numbers used in trigonometry and 
calculus. Another British mathematician, William Kingdon Clifford (1845-79) developed an 
entire branch of modern algebra during his short life, expanding upon the work of Hamilton and 
the polymath Hermann Grassman. These “Clifford algebras” generalize real numbers, complex 
numbers, quaternions, and many other hypercomplex number systems, and constitute a 
considerable area of study.  
 Clifford algebra is synonymous with Geometric Algebra (or “GA”), with a possible distinction 
being that GA implies that the “multivectors” involved imply familiar geometric entities. A 
breakthrough in finding practical applications was made by David Hestenes in recent decades. 
He found a way to create a space using five basis vectors: three with the familiar x-y-z axes, 
combined with special “null vectors” to obtain a point at the origin and one at infinity, the latter 
being analogous to a line or point at infinity in perspective art.  
This opened a brave new world of representing geometric operations (intersection, rotation, 
reflection, dilation) with compact algebraic operations, called “Conformal Geometric Algebra” 
(CGA).  
Since Hestenes’ landmark work, additional GAs have been treated in a similar way, each with its 
characteristic “signature” which denotes the composition of “basis vectors” and thus higher 
dimensionalities. These higher signature GAs allow for more complex operations and higher 
 

http://www.farnamstreetblog.com/2013/07/the-fragilista/


A New Orthodoxy               
GeoAutonomy’s Perspective on a Geometric Algebra Future for Autonomy 

“A New Orthodoxy”       Confidential and Proprietary, Copyright GeoAutonomy, LLC  
5/28/24 

17 

 
order surfaces such as ellipsoids, paraboloids, etc. and new applications are being found. Higher 
order GAs do require more computing power however. 
____________ 
 
v The quaternions exhibit important features of a Geometric Algebra: the geometric product 
consists of a symmetric and an anti-symmetric part, and isometries (movement of an object or 
image without changing its shape or size) are “sandwich operators”. Consequently, an advantage 
of Geometric Algebras is that useful subalgebras are embedded within the algebras of higher 
signature (or dimensionality). This allows for certain operations to be performed where a limited 
set of multivectors is sufficient, without changing the methods or the symbology.  
For instance, in the diagram below, all 32 elements (or “blades”) of one instance of Conformable 
Geometric Algebra are listed with their classification. Highlighted is a subset of 8 which 
represents “dual quaternions”, which could be described as supercharged quaternions geared for 
performing translation as well as rotation.  
 

List	of	Blades	in	Conformal	Geometric	Algebra       
GeoAutonomy©	

 

Grade	
	

Type	 possible	blades	in	Grade	 Number	
0	 scalar	 1	

	
1	

1	 vector	 e1	,	e2	,	e3	,	e∞	,	e0				 5	
2	 bivector	 e1∧e2	,	e1∧e3	,	e1∧e∞	,	e1∧e0	,	

	

	e2∧e3	,	e2∧e∞	,	e2∧e0	,	e3∧e∞	,	
	

	e3∧e0	,	e∞∧e0		
	

10	

3	 trivector	 	e1∧e2∧e3	,	e1∧e2∧e∞	,	e1∧e2∧e0	,	
	

e1∧e3∧e∞	,	e1∧e3∧e0	,	e1∧e∞∧e0	,	
	

e2∧e3∧e∞	,	e2∧e3∧e0	,	e2∧e∞∧e0	,	
	

e3∧e∞∧e0	
	

10	

4	 quadvector	 	e1∧e2∧e3∧e∞	,	e1∧e2∧e3∧e0	,	
	

e1∧e2∧	e∞∧e0	,	e1∧e3∧e∞∧e0	,	
	

e2∧e3∧e∞∧e0	
	

5	

5	 pseudoscalar	 e1∧e2∧e3∧e∞∧e0		
	

1	
 
Table	of	Conformal	Geometric	Algebra	elements,	called	“blades”.	Highlighted	
blades	correspond	to	the	elements	of	the	Dual	Quaternion	algebra,	a	small		
subset	of	Conformal	Geometric	Algebra,	although	fairly	powerful	by	itself	as	a		
technique	for	computer	graphics	and	small-movement	interpolation.	
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____________ 
 
vi From Smithsonian Time and Navigation  site: 
 https://timeandnavigation.si.edu/satellite-navigation/gps/risks-to-system 
 
Risks to the System 

Threats can imperil satellite navigation systems: 

Satellites provide essential navigation services, but threats exist to their operation. Radio 
interference from both natural and human sources presents serious problems for the system’s 
myriad users. Engineers and scientists continue to develop solutions to ensure the continued 
operation of global navigation services. 

Solar Interference 
Solar activity can interfere with satellite signals. Solar storms occasionally interrupt clear 
reception of signals from space. Those who design satellite systems must plan for these 
disruptions and be aware of how solar activity varies with the 11-year sunspot cycle. 

System Maintenance 
The successful operation of a satellite navigation system requires around-the-clock monitoring of 
the satellites’ health and the periodic replacement of older satellites. The process is labor-
intensive and expensive and requires multiple backups to ensure continuous operation.  

Man-made Radio Interference 
GPS and other satellite positioning systems were designed to use quiet parts of the spectrum. 
However, these channels face the danger of being overwhelmed by communications signals from 
other nearby frequencies. Engineers must test the possibility of interference from multiple 
systems.  

Intentional Jamming  
Although their use is illegal in the United States, portable GPS jammers are traded clandestinely 
and used by those who wish not to be tracked or otherwise located by GPS. These devices cause 
nearby navigation systems to malfunction, potentially threatening public safety. 

System Under Attack 
The increasing reliance on navigation satellites for military and commercial activities makes 
them a tempting target for an enemy. While it is difficult to disable the satellites themselves, 
these and other GPS components must be protected from interference or attack. 

____________ 
 

 
 

https://timeandnavigation.si.edu/satellite-navigation/gps/risks-to-system
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vii  
Approaches to Rotation and Translation 
 From a working paper by Jacob Davisson 

Introduction 
In order to properly describe the flight dynamics and physics of a Vehicle, unmanned or 
otherwise, a number of mathematical techniques must be employed. Some of these  
methods follow from the nature of problem-solving in physics. Others, may yield under a 
variety of possible approaches. Handling rigid-body movement is a set of tasks that can be 
solved using different approaches. 

Various methods for representing and applying rotations, and to a lesser extent, 
translations, will be described in the following pages, with commentary relevant to (1) 
understanding the approach and (2) how GeoAutonomy has chosen favorable techniques. 

Applications 

Special Orthogonal Group on ℝ! 

Also known as the 3D Rotation Group, the Special Orthogonal Group on ℝ3, (𝑆𝑂(3)) is a 
collection of matrices representing all rotations around the origin in ℝ3. Matrices in this 
group are orthonormal — meaning that the column and row vectors comprising it are 
orthogonal and have norm equal to ±1. In the case of 𝑆𝑂(3), the norm is equal to +1, 
and this is why it labeled as special. This particular method is called out by name, and 
utilized in various examples, in the patent filed for by DJI1. 

Rotations in this form are determined by a vector of unit length (around which the rotation 
is imparted) and the angle which the rigid-body is rotated around that unit vector. 
Representations of these particular rotations are given below, by the following three 3 × 3 
matrices. 
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𝑅! = #
1 0 0
0 𝑐𝑜𝑠(𝜃") −𝑠𝑖𝑛(𝜃")
0 𝑠𝑖𝑛(𝜃") 𝑐𝑜𝑠(𝜃")

/ 						𝑬𝒒𝒏	𝟏

𝑅# = #
𝑐𝑜𝑠(𝜃$) 0 𝑠𝑖𝑛(𝜃$)

0 1 0
−𝑠𝑖𝑛(𝜃$) 0 𝑐𝑜𝑠(𝜃$)

/ 						𝑬𝒒𝒏	𝟐

𝑅% = #
𝑐𝑜𝑠(𝜃&) −𝑠𝑖𝑛(𝜃&) 0
𝑠𝑖𝑛(𝜃&) 𝑐𝑜𝑠(𝜃&) 0

0 0 1
/ 					𝑬𝒒𝒏	𝟑

											 

Note that in Equations 1, 2, and 3  the represented rotations are around the 𝑥-axis, 𝑦-axis, 
and 𝑧-axes respectively. For this reason, the entry corresponding to each of these axes is 
unity along the main diagonal of each matrix. Also, the angular argument for each has been 
given a subscript that corresponds to the rotational degree of freedom.2 

As an example of each rotation, we can apply the corresponding matrix to a unit vector 
along an orthogonal axis, and show how each is rotated. Let 𝑋, 𝑌, and 𝑍 be unit vectors 

along the axis that they are named by, let 𝑋′, 𝑌′, and 𝑍′ be the transformed (rotated) 
vectors. Then rotating each one by 90∘ yields: 

𝑌' =

⎣
⎢
⎢
⎢
⎡
1 0 0
0 𝑐𝑜𝑠 ;

𝜋
2
> −𝑠𝑖𝑛 ;

𝜋
2
>

0 𝑠𝑖𝑛 ;
𝜋
2
> 𝑐𝑜𝑠 ;

𝜋
2
> ⎦
⎥
⎥
⎥
⎤
#
0
1
0
/ = #

1 0 0
0 0 −1
0 1 0

/ #
0
1
0
/ = #

0
0
1
/ = 𝑍							𝑬𝒒𝒏	𝟒

𝑍' =

⎣
⎢
⎢
⎢
⎡ 𝑐𝑜𝑠 ;

𝜋
2
> 0 𝑠𝑖𝑛 ;

𝜋
2
>

0 1 0
−𝑠𝑖𝑛 ;

𝜋
2
> 0 𝑐𝑜𝑠 ;

𝜋
2
>⎦
⎥
⎥
⎥
⎤
#
0
0
1
/ = #

0 0 1
0 1 0
−1 0 0

/ #
0
0
1
/ = #

1
0
0
/ = 𝑋							𝑬𝒒𝒏	𝟓

𝑋' =

⎣
⎢
⎢
⎢
⎡𝑐𝑜𝑠 ;

𝜋
2
> −𝑠𝑖𝑛 ;

𝜋
2
> 0

𝑠𝑖𝑛 ;
𝜋
2
> 𝑐𝑜𝑠 ;

𝜋
2
> 0

0 0 1⎦
⎥
⎥
⎥
⎤
#
1
0
0
/ = #

0 −1 0
1 0 0
0 0 1

/ #
1
0
0
/ = #

0
1
0
/ = 𝑌							𝑬𝒒𝒏	𝟔

 

Gimbal Lock 

This rotation group, 𝑆𝑂(3), appears sufficient for handling rotations of a rigid body in 3-
space. As shown in Equations 4, 5, and 6 the position vectors are rotated around the 
particular axis, at the specified angle. An issue, which is not immediately obvious, can 
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arise when utilizing 𝑆𝑂(3) where two or more axes of rotation can become aligned and a 
degree of freedom3 is lost — this condition is known as Gimbal Lock. It can be shown how 
SO(3) can suffer gimbal lock by considering a mechanical example4, and then applying that 
knowledge mathematically using 𝑆𝑂(3). 

 

A mechanical gyroscope, with all three axes orthogonally oriented. 

The figure shows a mechanical gyroscope, with its all three of its axes in an orthogonal 
configuration — all three degrees of freedom are completely independent. How could we 
align these axes so that the resulting configuration would exhibit gimbal lock? Take any of 
the three orthogonally-mounted rings, and align it with any of the other two so that they are 
concentric5. This is done by rotating one of these rings 90∘ in either direction. Once this is 
done, gimbal lock is achieved, and one of the system’s degrees of freedom is lost — due to 
the coupling of two axes. 

In order to show how gimbal lock is shown in 𝑆𝑂(3), the three rotation matrices6 can be 
multiplied together7 and a 90∘ rotation mathematically imparted by argument 
substitution.  
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𝑬𝒒𝒏	𝟕 𝑅 = 	𝑅!𝑅"𝑅#

= /
1 0 0
0 𝑐𝑜𝑠(𝜃$) −𝑠𝑖𝑛(𝜃$)
0 𝑠𝑖𝑛(𝜃$) 𝑐𝑜𝑠(𝜃$)

9 /
𝑐𝑜𝑠(𝜃%) 0 𝑠𝑖𝑛(𝜃%)

0 1 0
−𝑠𝑖𝑛(𝜃%) 0 𝑐𝑜𝑠(𝜃%)

9 /
𝑐𝑜𝑠(𝜃&) −𝑠𝑖𝑛(𝜃&) 0
𝑠𝑖𝑛(𝜃&) 𝑐𝑜𝑠(𝜃&) 0

0 0 1
9

= :
𝑐𝑜𝑠(𝜃$) 0 𝑠𝑖𝑛(𝜃$)

𝑠𝑖𝑛(𝜃$)𝑠𝑖𝑛(𝜃%) 𝑐𝑜𝑠(𝜃$) −𝑠𝑖𝑛(𝜃$)𝑐𝑜𝑠(𝜃%)
−𝑐𝑜𝑠(𝜃$)𝑠𝑖𝑛(𝜃%) 𝑠𝑖𝑛(𝜃$) 𝑐𝑜𝑠(𝜃$)𝑐𝑜𝑠(𝜃%)

; /
𝑐𝑜𝑠(𝜃&) −𝑠𝑖𝑛(𝜃&) 0
𝑠𝑖𝑛(𝜃&) 𝑐𝑜𝑠(𝜃&) 0

0 0 1
9

= :
𝑐𝑜𝑠(𝜃%)𝑐𝑜𝑠(𝜃&) −𝑐𝑜𝑠(𝜃%)𝑠𝑖𝑛(𝜃&) −𝑠𝑖𝑛(𝜃%)

𝑠𝑖𝑛(𝜃$)𝑠𝑖𝑛(𝜃%)𝑐𝑜𝑠(𝜃&) + 𝑐𝑜𝑠(𝜃$)𝑠𝑖𝑛(𝜃&) −𝑠𝑖𝑛(𝜃$)𝑠𝑖𝑛(𝜃%)𝑠𝑖𝑛(𝜃&) + 𝑐𝑜𝑠(𝜃$)𝑐𝑜𝑠(𝜃&) 𝑐𝑜𝑠(𝜃$)𝑐𝑜𝑠(𝜃%)
𝑐𝑜𝑠(𝜃$)𝑠𝑖𝑛(𝜃%)𝑐𝑜𝑠(𝜃&) − 𝑠𝑖𝑛(𝜃$)𝑠𝑖𝑛(𝜃&) −𝑐𝑜𝑠(𝜃$)𝑠𝑖𝑛(𝜃%)𝑠𝑖𝑛(𝜃&) − 𝑠𝑖𝑛(𝜃$)𝑐𝑜𝑠(𝜃&) 𝑐𝑜𝑠(𝜃$)𝑐𝑜𝑠(𝜃%)

;

 

Equation 7 represents the product of all three 𝑆𝑂(3) rotations matrices, in the order 
prescribed on the top line. If a 90∘ pitch rotation were imparted on the gyroscope, then 
Equation 7 would take the following values: 

𝑅 =𝜃$,
𝜋
2
, 𝜃&? =

⎣
⎢
⎢
⎢
⎢
⎡ 𝑐𝑜𝑠 C

𝜋
2
D 𝑐𝑜𝑠(𝜃&) −𝑐𝑜𝑠 C

𝜋
2
D 𝑠𝑖𝑛(𝜃&) −𝑠𝑖𝑛 C

𝜋
2
D

𝑠𝑖𝑛(𝜃$)𝑠𝑖𝑛 C
𝜋
2D 𝑐𝑜𝑠

(𝜃&) + 𝑐𝑜𝑠(𝜃$)𝑠𝑖𝑛(𝜃&) −𝑠𝑖𝑛(𝜃$)𝑠𝑖𝑛 C
𝜋
2D 𝑠𝑖𝑛

(𝜃&) + 𝑐𝑜𝑠(𝜃$)𝑐𝑜𝑠(𝜃&) 𝑐𝑜𝑠(𝜃$)𝑐𝑜𝑠 C
𝜋
2D

𝑐𝑜𝑠(𝜃$)𝑠𝑖𝑛 C
𝜋
2D 𝑐𝑜𝑠

(𝜃&) − 𝑠𝑖𝑛(𝜃$)𝑠𝑖𝑛(𝜃&) −𝑐𝑜𝑠(𝜃$)𝑠𝑖𝑛 C
𝜋
2D 𝑠𝑖𝑛

(𝜃&) − 𝑠𝑖𝑛(𝜃$)𝑐𝑜𝑠(𝜃&) 𝑐𝑜𝑠(𝜃$)𝑐𝑜𝑠 C
𝜋
2D⎦
⎥
⎥
⎥
⎥
⎤

= /
0 0 −1

𝑠𝑖𝑛(𝜃$)𝑐𝑜𝑠(𝜃&) + 𝑐𝑜𝑠(𝜃$)𝑠𝑖𝑛(𝜃&) −𝑠𝑖𝑛(𝜃$)𝑠𝑖𝑛(𝜃&) + 𝑐𝑜𝑠(𝜃$)𝑐𝑜𝑠(𝜃&) 0
𝑐𝑜𝑠(𝜃$)𝑐𝑜𝑠(𝜃&) − 𝑠𝑖𝑛(𝜃$)𝑠𝑖𝑛(𝜃&) −𝑐𝑜𝑠(𝜃$)𝑠𝑖𝑛(𝜃&) − 𝑠𝑖𝑛(𝜃$)𝑐𝑜𝑠(𝜃&) 0

9 													𝑬𝒒𝒏	𝟖

 

Notice that the 90∘ pitch angle has removed a degree of freedom from Equation 8  — 
element 𝑎13 has changed to −1, which is not a modifiable degree of freedom any longer 
and will not respond to pitch-angle changes. 

Translations Described by 𝑆𝐸(3) 
Rotations are not the only required rigid-body motion that must be accounted for in UAV 
flight systems. Without being able to describe and apply translations inside of the flight 
control system, the best you could hope for is a drone to rotate in place. In order to 
describe and apply translations with 𝑆𝑂(3), we need to extend the space to a 4-
dimensional one, and expand the matrices (as given by Equations 1, 2, and 3) to 4 × 4 
matrices. The group comprising these expanded, 4 × 4 matrices is known as the Special 
Euclidean Group — denoted 𝑆𝐸(3). 

A transform matrix in 𝑆𝐸(3) is some variation of the following block matrix:  	     

T		=		H 𝑅 v
0(×* 1J 										𝐄𝐪𝐧	𝟗 

Limitations of 𝑆𝑂(3) 

The undesirable condition of Gimbal lock, as described above, may or may not be possible 
depending upon the system. Ignorance of it however can be catastrophic in some 
applications. It is not the only limitation that exists when performing rotations using 
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𝑆𝑂(3). Another important limitation arises from the properties required of these rotation 
matrices — orthogonality. Utilization of this technique to impart, or describe, rotations is 
simple enough on paper where floating point errors are not so much a concern. When 
applying 𝑆𝑂(3), multiple rotations cause the accumulation of many small errors as part 
of a code base8 floating point, noise, uncertainty, and rounding errors. Care must be taken 
to require that these rotation matrices are re-orthogonalized when concatenating 
rotations, which is inevitable. 

There are a number of different approaches to re-orthogonalization of rotation matrices. 
Among these are: Singular-Value Decomposition, Gram-Schmidt Orthonormalization, QR 
Decomposition, etc. An outline of these methods may be given in a future revision of this 
document, but for now they are out of scope. An abundance of information relative to 
these methods (and others) is available online, or in linear algebra textbooks. 

Since rotations by employing 𝑆𝑂(3) rotation matrices are performed using the 
orthonormal basis vectors of ℝ3, the orthonormal nature of these matrices must be 
upheld. If it is not, then, as noted, the system that these rotations are applied to will be 
accumulating errors in any state variable affected by rotation — attitude, orientation, etc. 

Quaternions 
The group known as the Quaternions are often used for handling rotations in aerospace 
and video game/computer graphics applications. There are a number of benefits in utilizing 
quaternions instead of the 𝑆𝑂(3) rotation matrices described above, and chief among 
them is the ability to directly perform a rotation around an arbitrary axis — instead of being 
restricted to rotations around the three basis vectors of the space. 

Quaternion algebra is unique, though it does share some properties with ordinary complex 
algebra. This algebra can certainly be a bit more computationally intensive when done on 
paper, due to the number of terms found in each product — though, once the general case 
for each operation is determined by hand, a computer program function can be easily 
written to handle the computations quickly and effectively. 

Properties of the Quaternion Algebra 
A quaternion is comprised of a scalar and vector part — with the latter being identified by 
the i, j, and k unit vectors. The canonical forms of a quaternion follow: 

q		=		s		+	v										 	 								Eqn	10	

			 =		𝜎	+	𝛼i	+	𝛽j	+	𝛾k															Eqn	11	
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with 𝜎 being the scalar part and 𝛼, 𝛽, and 𝛾 being coefficients of the unit vector 
components i,	j,	and	k. Quaternion algebra has a few unique properties, and some 
familiar from ordinary complex number algebra. For example, addition of two quaternions 
is given below. 

    

𝑞( +	𝑞+  =	  (𝑠( + 𝑠+) + (v𝟏 + v𝟐)         Eqn	12	

=			(𝜎( + 𝜎+)	+	(𝛼(i + 𝛽(j + 𝛾(k + 𝛼+i + 𝛽+j + 𝛾+k)				 Eqn	13	

=		(𝜎( + 𝜎+)	+	(𝛼( + 𝛼+)i	+	(𝛽( + 𝛽+)j	+	(𝛾( + 𝛾+)𝐤					Eqn	14 

 

Complex conjugation of quaternions is also a familiar operation, performed in similar 
manner to doing so in complex numbers 𝑧 ∈ ℂ.		 

     𝑞∗  =		(𝑠 + v)∗ 

=		𝑠 − v	

=		𝑠 −	(𝛼𝐢 + 	β𝐣 + 	γ𝐤)	

=			𝑠 −		𝛼𝐢 − 	β𝐣 − 	γ𝐤								Eqn	15 

 

An important operation when working with 𝑧 ∈ ℂ, conjugation provides for a simple way to 
determine magnitude of complex numbers (both 𝑧 ∈ ℂ and quaternions). 

	 

‖𝑞‖  =	 `𝑞𝑞∗  =	 `𝑞∗𝑞  =		`𝑠+ + 𝛼+ +	𝛽+ +	𝛾+       Eqn	16 

Normalizing an arbitrary quaternion is done in the same manner as in other algebras 
(vector algebra, complex algebra, ...) by division with the norm — yielding a unit-length 
quaternion. 

𝑞/012 	=		
!
‖!‖
		=			 !

#!!∗
		=		 !

#!∗!
		=		 !

#$&%	'&%	(&%	)&
						Eqn	17	

The application of Equations 16 and 17 allow a multiplicative inverse ("reciprocal") for non-
zero quaternions to be defined. 

 



A New Orthodoxy               
GeoAutonomy’s Perspective on a Geometric Algebra Future for Autonomy 

“A New Orthodoxy”       Confidential and Proprietary, Copyright GeoAutonomy, LLC  
5/28/24 

25 

 

𝑞3(		=	 !
∗

‖!‖&
							Eqn	18	

Multiplication of quaternions is a non-commutative operation for the vector components 
(scalar multiplication is still a commutative operation), and for this reason these products 
are presented below. 

𝐢+ =	 𝐣+	=	𝐤+	=	ijk	=	−1			 	Eqn	19	

jk		=		−kj		=		i	 					 														Eqn	20	

ki	=	−ik	=	j		 	 												Eqn	21		

ij	=	-ji	=	k																																							Eqn	22	

The anti-commutative nature of the vector components is clear from Equation 20, 21 
and 22. 

Quaternion Rotations 

Spatial rotations of a rigid-body in ℝ3 performed using the techniques of 𝑆𝑂(3) are about 
one of the particular orthogonal axes. Euler’s Rotation Theorem9 is easily applied using 
𝑆𝑂(3) when rotations are applied around those orthogonal axes, but not so easily applied 
when a non-orthogonal axis is more convenient (or necessary). Quaternion rotations of a 
rigid-body in ℝ3 allow for another axis to be easily chosen and yield a mathematical 
treatment of the rotation that is applied to those around the orthogonal axes as easily as it 
is applied to an arbitrarily chosen axis. 

In order to perform a rotation by utilizing quaternions, it is necessary to choose both an 
axis10 around which to perform the rigid-body rotation and an angle, 𝜃, to rotate the rigid-
body through11. 

Choose an arbitrary axis to rotate about, let u^ = 0+𝑢𝑥i + 𝑢𝑦j + 𝑢𝑧k  (note that this is a 
pure quaternion — in that it has a zero-valued scalar part). An arbitrary angle, 𝜃 is chosen 

as the angle through which we will rotate about u^ . These two quantities allow us to define a 
rotor, in the following manner. 
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r = 𝑒56
7
+8u

^
:																														𝑬𝒒𝒏	𝟐𝟑

r = 𝑒56
7
+8;<=/Ji=/Kj=/LkA:						𝑬𝒒𝒏	𝟐𝟒

r = 𝑒56
7
+8;/Ji=/Kj=/LkA:												𝑬𝒒𝒏	𝟐𝟓

r = 𝑐𝑜𝑠 H
𝜃
2
J + 𝑠𝑖𝑛 H

𝜃
2
J d𝑢!i + 𝑢#j + 𝑢%kf						𝑬𝒒𝒏	𝟐𝟔

 

 

 

Note the application of Euler’s Formula12 from Equation 23 to 26. 

In order to perform a rotation, the generation of a rotor is necessary. Its conjugate is also 
required, which we can write by the ordinary manner. 

r = 𝑒36
7
+8u

^

= 𝑐𝑜𝑠 H
𝜃
2
J − 𝑠𝑖𝑛 H

𝜃
2
J d𝑢!i + 𝑢#j + 𝑢%kf						𝑬𝒒𝒏	𝟐𝟕

r∗ = 𝑒=6
7
+8u

^

= 𝑐𝑜𝑠 H
𝜃
2
J + 𝑠𝑖𝑛 H

𝜃
2
J d𝑢!i + 𝑢#j + 𝑢%kf						𝑬𝒒𝒏	𝟐𝟖

 

With Equations 27 and 28 we can write the rotation of an arbitrary vector, v = 𝑎+i +
𝑎,j + 𝑎-k into rotated vector v’, in the following way: 

v’ = rvr∗

= /𝑐𝑜𝑠 3
𝜃
26 + 𝑠𝑖𝑛 3

𝜃
26 :𝑢Ni + 𝑢Oj + 𝑢Pk?@ v /𝑐𝑜𝑠 3

𝜃
26 − 𝑠𝑖𝑛 3

𝜃
26 :𝑢Ni + 𝑢Oj + 𝑢Pk?@

	𝑬𝒒𝒏	𝟐𝟗 

- and from here to be expanded in another revision. 

Quaternion Limitations 

As with 𝑆𝑂(3), the use of quaternions is not without limitations — though they are fewer. 
By use of 𝑆𝑂(3) to describe and perform rotations about an arbitrary axis it is necessary 
to write these as the composition of rotations around each of the three orthonormal axes 
of the space. It is also necessary that in applications these matrices be orthogonalized 
often, to ensure that they retain all of the necessary properties of the group — rotating 
around an axis that is supposed to be orthogonal, but isn’t, would result in rotating 
portions of the vector that are not to be rotated. 

Quaternions remove the restrictions of 𝑆𝑂(3), by not requiring that rotations occur 
around one of the three orthogonal axes of the space. The requirement of orthogonalizing, 
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as in the use of 𝑆𝑂(3), is also gone — and any axis rotated around with quaternions is 
expressed as a unit vector.   

One similarity that quaternions share with 𝑆𝑂(3), is that applications of rotations are 
restricted to vectors. This works well for rigid-bodies, as a well-chosen position vector 
representing a point on a rigid-body will rotate the entire rigid-body as desired. It still may 
mean that there is somewhat of a mixed-representation of objects13. 

Conformal Geometric Algebra 
The approaches previously discussed, have their own benefits and limitations. As a 
specific example, the rotation matrix approach of 𝑆𝑂(3) allows for a fairly simple way to 
rotate vectors around either of the three orthogonal axes — but not around other non-
orthogonal axes. The quaternion approach changes this, and allows for rotation of vectors 
around arbitrary axes — but not more complicated geometric objects. By a suitable 
application of Geometric Algebra14, any geometric object that can be represented in the 
space can be rotated around any other object in the space. Previous examples of 
limitations from other approaches are effectively absent, and the full power of geometry 
and geometric representations is available to the user. 

No discussion, be it in white paper, academic research paper, or other, is considered 
sufficient regarding Geometric Algebra without an introduction to the basic properties of 
the algebra. This particular section will include a reasonably thorough discussion of the 
salient properties of the algebra, in order for a more fulfilling discussion of the technique to 
take place. The use of Geometric Algebra is the approach that GeoAutonomy has chosen 
for its past, present, and future products. Properties of Geometric Algebra described in the 
following section will be covering both the ordinary and conformal geometric algebras — 
as the properties of both share many similarities, with the conformal mapping and certain 
properties being unique to the conformal algebra. 

Algebraic Properties of the (Conformal) Geometric Algebra 

A Geometric Algebra is an algebra written on a field15 and may, or may not, extend the 
dimensionality of said field. It is just as possible to write a geometric algebra on ℝ! as 
𝔾!(ℝ!) as it is to write 𝔾"(ℝ!). The number of basis vectors corresponds to the 
dimensionality of the Geometric Algebra, and these basis vectors are most commonly 
denominated 𝑒1, 𝑒2,⋯ , 𝑒𝑖, where 𝑖 ∈ ℕ. This nomenclature allows for a simpler 
enumeration of basis vectors when the dimensionality of the Geometric Algebra gets 
sufficiently high. 

Some operations from ordinary vector algebra are maintained in this approach, such as the 
Inner Product. In example, let 𝑉1 = 𝑎1𝑒1+𝑏1𝑒2+ 𝑐1𝑒3 and 𝑉2 = 𝑎2𝑒1+𝑏2𝑒2+
𝑐2𝑒3. The inner product of these two vectors, 𝑉1 and 𝑉2 is given by: 
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𝑉( ⋅ 𝑉+ = (𝑎(𝑒( + 𝑏(𝑒+ + 𝑐(𝑒*) ⋅ (𝑎+𝑒( + 𝑏+𝑒+ + 𝑐+𝑒*)				𝑬𝒒𝒏	𝟑𝟎

= 𝑎(𝑎+ + 𝑏(𝑏+ + 𝑐(𝑐+																																																		𝑬𝒒𝒏	𝟑𝟏
    

Equation 30 shows the inner product in geometric algebra as familiar from vector algebra 
— which works across spaces of any dimension. 

An important note to make here, is that the basis vectors do not commute under the 
geometric product — this is due to the fact that they do not commute under the exterior 
product — the order of the product of these elements is quite important to note and keep 
track of. This matter does not arise from the inner product, since they are orthogonal basis 
vectors the inner product of two dissimilar basis vectors is necessarily zero. Instead, this 
matter arises from another operation — the other half of the Geometric Product — which is 
colloquially known as the Wedge Product, and more specifically known as the Exterior 
Product. Whereas the inner product yields the projection of one vector onto another (which 
shows how similar the orientation is between the two vectors in the product — the parallel 
component of their orientation), the exterior product yields the rejection of the two vectors 
(how dissimilar the orientation is between the two — the orthogonal component of their 
orientation). Properties of the exterior product of basis vectors can be shown in a relatively 
short list. 

𝑒1 ∧ 𝑒1 = 0																𝑬𝒒𝒏	𝟑𝟐
𝑒1 ∧ 𝑒B = −𝑒B ∧ 𝑒1																				𝑬𝒒𝒏	𝟑𝟑

d𝑒1 ∧ 𝑒Bf	d𝑒1 ∧ 𝑒Bf = −d𝑒1 ∧ 𝑒Bfd𝑒B ∧ 𝑒1f = −(𝑒1𝑒1) = −1						𝑬𝒒𝒏	𝟑𝟒
𝑎(𝑒1 ∧ 𝑏(𝑒B = (𝑎(𝑏()𝑒1𝑒B																						𝑬𝒒𝒏	𝟑𝟓
𝛼d𝑒1 ∧ 𝑒Bf = (𝛼𝑒1) ∧ 𝑒B																								𝑬𝒒𝒏	𝟑𝟔

 

Equation 34  shows the geometric product of two bivectors. If this were an exterior product 
applied to the same bivector, the result would necessarily be zero, due to the result in 
Equation 32. Note that the grade of the algebraic object in Equation 35 has increased from 
grade-1 to grade-2. This occurs with orthogonal vectors, and other objects of grade lower 
than that of the dimension of the space. Due to Equation 32, a barrier is erected to the 
possibility of higher-grade geometric objects in the space that have more than one of the 
same basis vector (𝑒𝑖) present — there is no possibility of having a higher-grade object in 
the space having the form: 𝑒𝑖𝑒𝑗𝑒𝑘. . . 𝑒𝑖. 

Geometric algebra adds an additional product, that yields the sum of the inner and exterior 
products — and it is known as the Geometric Product. Given two arbitrary objects in the 
geometric algebraic space16, the geometric product can be written as such. 

𝑀2𝑀3 = 𝑀2 ⋅ 𝑀3 +𝑀2 ∧ 𝑀3   	Eqn	37 
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There are other ways to express the geometric product, by application of the grade-
selection operator (also known as the: grade-projection operator), which may be outlined 
later in this document. Properties of the geometric product are also worth mentioning, and 
are given below. Equation 38 through 40 are the laws of associativity and distributivity. 

(𝐴𝐵)𝐶 							= 𝐴(𝐵𝐶)																		𝑬𝒒𝒏	𝟑𝟖				
𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶										𝑬𝒒𝒏	𝟑𝟗
(𝐵 + 𝐶)𝐴 = 𝐵𝐴 + 𝐶𝐴											𝑬𝒒𝒏	𝟒𝟎

 

Multiplication of two arbitrary vectors, 𝐴1 = 𝜎1+𝑎1𝑒1+𝑏1𝑒2+ 𝑐1𝑒3 and 𝐴2 = 𝜎2+
𝑎2𝑒1+𝑏2𝑒2+ 𝑐2𝑒3, and applying the rules of the algebra would yield the following: 

		𝐴Q𝐴R 								= (𝜎Q + 𝑎Q𝑒Q + 𝑏Q𝑒R + 𝑐Q𝑒S)(𝜎R + 𝑎R𝑒Q + 𝑏R𝑒R + 𝑐R𝑒S)      Eqn	41	

 

=		𝜎Q𝜎R	+	𝜎Q𝑎R𝑒Q	+	𝜎Q𝑏R𝑒R	+	𝜎Q𝑐R𝑒S	+	𝑎Q𝑒Q𝜎R	+	𝑎Q𝑒Q𝑎R𝑒Q	+	𝑎Q𝑒Q𝑏R𝑒R	+	𝑎Q𝑒Q𝑐R𝑒S	

+ 𝑏Q𝑒R𝜎R + 𝑏Q𝑒R𝑎R𝑒Q +𝑏Q𝑒R 𝑏R𝑒R + 𝑏Q𝑒R𝑐R𝑒S + 𝑐Q𝑒S𝜎R + 𝑐Q𝑒S𝑎R𝑒Q + 𝑐Q𝑒S𝑏R𝑒R + 𝑐Q𝑒S𝑐R𝑒S 

=		𝜎Q𝜎R	+	𝜎Q𝑎R𝑒Q	+	𝜎Q𝑏R𝑒R	+	𝜎Q𝑐R𝑒S	+	𝜎R𝑎Q𝑒Q	+	𝑎Q𝑎R𝑒Q𝑒Q	+	𝑎Q𝑏R𝑒Q𝑒R	+	𝑎Q𝑐R𝑒Q𝑒S	

+	𝜎R𝑏Q𝑒R	+	𝑎R𝑏Q𝑒R𝑒Q	+	𝑏Q𝑏R𝑒R𝑒R	+	𝑏Q𝑐R𝑒R𝑒S	+	𝜎R𝑐Q𝑒S	+	𝑎R𝑐Q𝑒S𝑒Q	+	𝑏R𝑐Q𝑒S𝑒R	+	𝑐Q𝑐R𝑒S𝑒S	

=			𝜎Q𝜎R	+	𝜎Q𝑎R𝑒Q	+	𝜎Q𝑏R𝑒R	+	𝜎Q𝑐R𝑒S	+	𝜎R𝑎Q𝑒Q	+	𝑎Q𝑎R	+	𝑎Q𝑏R𝑒Q𝑒R	+	𝑎Q𝑐R𝑒Q𝑒S	

+	𝜎R𝑏Q𝑒R	-	𝑎R𝑏Q𝑒Q𝑒R	+	𝑏Q𝑏R	+	𝑏Q𝑐R𝑒R𝑒S	+	𝜎R𝑐Q𝑒S	-		𝑎R𝑐Q𝑒Q𝑒S	-	𝑏R𝑐Q𝑒R𝑒S	+	𝑐Q𝑐R	

	

So,	after	reorganizing:					𝐴Q𝐴R								=	(𝜎Q𝜎R	+	𝑎Q𝑎R	+	𝑏Q𝑏R	+	𝑐Q𝑐R)																																				Eqn	42	

+	(𝜎Q𝑎R	+	𝜎R𝑎Q)	𝑒Q	+	(𝜎Q𝑏R	+	𝜎R𝑏Q)	𝑒R	+	(𝜎Q𝑐R	+	𝜎R𝑐Q)	𝑒S						

+	(𝑎Q𝑏R	-	𝑎R𝑏Q)	𝑒Q𝑒R	+	(𝑎Q𝑐R	-	𝑎R𝑐Q)	𝑒Q𝑒S	+	(𝑏Q𝑐R	-	𝑏R𝑐Q)	𝑒R𝑒S.	

	

The three lines of Eqn 42 show the terms of the product organized by grades. The upper line 
consists of scalars, the middle line of the three single vectors multiplied by scalar terms, and the 

lower line consists of the three possible bivectors multiplied by scalar terms. Note the symmetries. 
Although all algebraic steps are shown so that you may follow it, a seasoned practitioner might 

write out Eqn 42 directly, skipping the intermediates. There is also a matrix version.   

  

In order to continue the discussion of Conformal Geometric Algebra, while minimizing the 
myriad derivations, it is necessary to determine the mapping of vectors from ℝ3 into 
𝔾4,1,0. Define a mapping, 𝑀(v): ℝ7 → 𝔾8,2,9 to be 
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𝑀(v): ℝ: → 𝔾8,2,9 = v + v#

3
𝑒< + 𝑒9      Eqn	43 

This mapping is required due to the additional dimensions of the space. In Equation 43 the 
vector v	is the ordinary three-component vector as known to students of vector algebra 
and calculus. An example of how to map a vector,  

v = 1𝑒2 + 0𝑒3 + 0𝑒7, into this conformal geometric algebra space follows: 

𝑀(1𝑒2 + 0𝑒3 + 0𝑒7) = (1𝑒2 + 0𝑒3 + 0𝑒7) +
(1𝑒2 + 0𝑒3 + 0𝑒7)3

2
𝑒< + 𝑒9

𝑀(1𝑒2) = (1𝑒2) +
(1𝑒2)3

2 𝑒< + 𝑒9

𝑀(1𝑒2) = 1𝑒2 +
(1)
2
𝑒< + 𝑒9								𝑬𝒒𝒏	𝟒𝟒

 

Equation 44 is the result of mapping the unit vector along the 𝑥-axis into 𝔾4,1,0 — notice 
the additional basis vector components, 𝑒0 and 𝑒∞, included in this mapped vector. These 
new basis vectors are generated by particular summations of 𝑒+ and 𝑒−, described17 as 
follows. 

𝑒< =
1
2
(𝑒3 − 𝑒=)					𝑬𝒒𝒏	𝟒𝟓

𝑒C = 𝑒3 + 𝑒=												𝑬𝒒𝒏	𝟒𝟔
	 

Subscripts for Equations 45 and 46 signify that 𝑒0 points at the origin, and 𝑒∞ points at 
infinity. This can be shown by applying a few limits: 

𝑙𝑖𝑚
|v|→<

Y
2
v3Z𝑀

(v) = 𝑙𝑖𝑚
|v|→<

Y
2
v3Z v + 𝑒< + Y

2
v3Z 𝑒9 = 𝑒<			𝑬𝒒𝒏	𝟒𝟕

𝑙𝑖𝑚
v→9

𝑀(v) = 𝑒9																																																																											𝑬𝒒𝒏	𝟒𝟖
 

Equations 47 and 48 show that as the mapped vector goes to ∞ or 0, respectively, the 
resultant mapping points at either 𝑒∞ or 𝑒0. 

Rotations in Geometric Algebra 
Rotations in Geometric Algebra are unique when contrasted with those done by applying 
𝑆𝑂(3) or those done by quaternions. In order to perform a rotation using 𝑆𝑂(3) rotation 
matrices, it is necessary to determine which composition of rotations around the three 
orthogonal basis vectors corresponds to a rotation about whichever axis is desired 
(assuming it is not one of the three orthonormal basis vectors). The quaternions allow for a 
 



A New Orthodoxy               
GeoAutonomy’s Perspective on a Geometric Algebra Future for Autonomy 

“A New Orthodoxy”       Confidential and Proprietary, Copyright GeoAutonomy, LLC  
5/28/24 

31 

 
substantial improvement over the use of 𝑆𝑂(3), by allowing the user to choose an 
arbitrary vector to rotate around — but the use of quaternions is still limited by rotating an 
arbitrary vector around another. 

Geometric Algebra, in contrast to the limitations of the other two methods outlined herein, 
allows a user to rotate any arbitrary geometric object in the space around an angle inside 
an arbitrary plane (the same plane orthogonal to the vector that would be chosen if 
applying a quaternion rotation). In order to perform a rotation in geometric algebra, it is first 
necessary to construct a rotor. A Conformal geometric algebra further extends the 
usefulness of the rotor by allowing translations to be described by this same manner — 
which can then be composed alongside rotations by the same application of these 
translational rotors. 

A rotor is a mathematical device that, when appropriately applied to an object in a 
geometric algebra space, rotates the object it was applied to. In geometric algebra, 
rotations are applied around a bivector – the grade-2 elements of the space. Bivectors are 
most simply generated18 by application of the exterior product to two vectors. 

The following discussion should help clarify the creation and application of a rotor to an 
object in a geometric algebra space. Some of this is necessary, and helps relate the use of 
a rotor to knowledge that any graduate of a mathematics, physics, or engineering program 
should have readily available. 

According to the reference text, Geometric Algebra for Computer Science, there are a 
number of ways in which a rotor can be defined in a geometric algebra. Some definitions 
strictly make use of the resultant bivector left after the geometric product of two unit 
vectors, and the products resulting by multiplication with other multivectors in the space. 
By expanding this geometric product, as follows, the exponential form of the rotor can be 
determined. Let 𝑎1 and 𝑏1 be unit vectors with 𝑎1, 𝑏1 ∈ 𝔾

3 

𝑎2𝑏2 = 𝑎2 ⋅ 𝑏2 + 𝑎2 ∧ 𝑏2 = 𝑐𝑜𝑠 ]B
3
^ − 𝐼𝑠𝑖𝑛 ]B

3
^     Eqn	49 

Note that, in Equation 49, since unit vectors were used in this geometric product, the 
coefficient for each trigonometric term is (+1). In the same equation, 𝐼 represents the 
unit 2-blade for the 𝑎1 ∧ 𝑏1-plane. Careful observers will recognize this equation as 
Euler’s Identity, when considering that 𝐼 = 𝑎2 ∧ 𝑏2 and that 𝐼2 = (𝑎1 ∧ 𝑏1)(𝑎1 ∧ 𝑏1) =
−(𝑎1 ∧ 𝑏1)(𝑏1 ∧ 𝑎1) = −1 

Perhaps the most useful definition of a rotor19, is that describing the rotor as an 
exponential of bivectors. In this description, the rotation is described using a bivector to 
encode the plane in which the rotation takes place as well as the angle through which the 
object is rotated. In order to construct this rotor, it is necessary to know the angle, 𝜃, 
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through which the rotation is to take place and the bivector, 𝐵, inside which that angle is to 
be swept out. It is important to note here, similarly to rotors constructed from quaternions, 

that the angle of rotation will be twice the angle desired — since there is a factor of  
2
3

 in the 
rotor. 

In geometric algebra, the constructed rotor can be written as: 

𝑹 = 𝑒CDE
B
3F					𝑬𝒒𝒏	𝟓𝟎 

The application of this rotor, to an arbitrary multivector in the geometric algebra space, is 
done in the same manner as with quaternions — conjugation20. As in the application of a 
quaternion-derived rotor, the rotation is made in the following manner — where the 
conjugate21 of the rotor is necessary. 

𝒗	2GHI = 𝑹𝒗𝑹∗      Eqn	51 

  

Rotations in Conformal Geometric Algebra 
The Conformal Geometric Algebra space that is employed by GeoAutonomy at present22 is 
𝔾4,1,0 — this algebra has four basis vectors that square to +1, one basis vector that 
squares to −1, and zero basis vectors that square to 0. This is evident by inspection of the 
provided signature: 4,1,0. The canonical set of basis vectors from ℝ3 is extended in 𝔾4,1,0 
to the following: 

𝑒1, 𝑒2, 𝑒3, 𝑒+, 𝑒− 

The additional basis vectors in 𝔾4,1,0 square to, respectively, +1 and −1. This addition to 
the set of basis vectors for the space provides the signature boost that makes 𝔾4,1,0 a 5-
dimensional space. Equation 47 shows that 𝑒∞ points to infinity in the conformal 
geometric algebra space. By having this one-point compactification  with ∞, another 
unique property of rotors is exhibited. 

A translation can be achieved, in a conformal geometric algebra, by rotating around the 
“point at infinity”. By doing so, the object being moved is so far away from the center of 
rotation, that it becomes in effect, a straight line movement (translation). This is one of the 
distinct advantages of utilizing a conformal geometric algebra space over an ordinary one. 
Further descriptions will be provided if required. 
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	Rotation	and	Translation	Footnotes
 

1Aircraft Attitude Control Methods — WIPO Publication Number: WO 2015/180171 A1 
2e.g. A rotation around the x-axis, when aligned with the front of an object (front of a UAV), corresponds to roll. 
3A degree of freedom, in this case, refers to the number of independent variables (or parameters) that define the 
state of a rigid body. As an example, a train has one degree of freedom in its position due to being constrained by the 
track it travels on. An aircraft (as well as a sailboat), on the other hand, has six degrees of freedom — three 
describing directions it can translate and three corresponding to attitude.  
4A mechanical gyroscope — image in the figure found at: 
https://unmannedengineeriablog.wordpress.com/2016/01/22/ difference- between- gyroscope- and- gymbal/.  
5Sharing the same center. 
6Given by Equations 1, 2, and 3. 
7SO(3) is a nonabelian group, meaning that the order in which rotations are applied makes a difference. 
8For any code base, be it vehicular control, UAV control system, cell phone screen rotation, etc.  
9This theorem states that in R3 any rigid-body displacement in which one point on said rigid-body remains fixed is 
equivalent to a single rotation through some angle about the corresponding axis running through that point. 
10Any arbitrary axis is a fine choice. 
11This representation of the quantities required to perform a rotation is known as the axis-angle representation. 
12Euler’s Formula, as taught in undergraduate math, physics, and engineering courses, is: eiθ = cos(θ) + i sin(θ) 
13Both the vectors being rotated and the rotors themselves. 
14Here, specifically Conformal Geometric Algebra. 
15Typically, for physical purposes, this is R3.  
16The Geometric Product is an operation that can be performed on any object in the space — not just vectors, but 
any objects that can be part of the canonical multivector of the space.  
17Definitions for these two vectors vary depending on the author or source. It is not uncommon to see these 
multiplied by 2, to remove the fractional coefficient, or other seemingly minor changes.  
18There are other products that generate bivectors — the dual of a vector in G R3  
19Certainly for our purposes. 
20Otherwise, and colloquially known as: the sandwich product. 
21More properly, the reversion. 
22It is more than likely that future implementations, codebases, and products will employ higher-order algebras as 
well as the ones discussed here.  
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viii  
Rust	Algorithm	1	–	density/matrix/src/lib.rs	 
//! 
//! File: density/matrix/src/lib.rs 
//! Author: Jacob Davisson 
//! Last Modified: 13 May 2024 
//! Purpose: Provide a library with definitions, functions 
//!          trait implementations, etc. for handling 
//!          matrix and vector operations. 
//! Depends: ndarray::*; 
//!          std::fmt::Display; 
//!          std::fmt::Write; 
//! 
#![allow(non_snake_case)] 
#![allow(non_camel_case_types)] 
#![allow(unused)] 
#![allow(dead_code)] 
// #![recursion_limit = "65536"] 
use ndarray::*; 
use std::fmt::Display; 
use std::fmt::Write; 
use std::marker::Copy; 
pub enum AxisSelection { 
    I, //Identity 
    X, //R_{X} 
    Y, //R_{y} 
    Z, //R_{z} 
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}  
impl AxisSelection { 
    pub fn new() -> Self { 
        AxisSelection::I 
    } 
    pub fn X() -> Self { 
        AxisSelection::X 
    } 
    pub fn Y() -> Self { 
        AxisSelection::Y 
    } 
    pub fn Z() -> Self { 
        AxisSelection::Z 
    } 

}  
#[derive(Clone, Debug)] 
pub struct Vector { 
    vec: Array1<f32>, 
} 
impl Vector { 
    pub fn new() -> Self { 

Vector {  
            vec: arr1(&[0.0, 0.0, 0.0]), 
        } 

}  
    pub fn set(&mut self, x: f32, y: f32, z: f32) -> Self { 
        Vector { 
            vec: arr1(&[x, y, z]), 
        } 

}  
    pub fn fullRotation(&mut self, x: f32, y: f32, z: f32) -> Self { 
        Self::new() 
    } 

}  
impl Display for Vector { 
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { 
        write!(f, "{}", self.vec) 
    } 

}  
pub struct RotationMatrix { 
    axis: AxisSelection, 
    mat: Array2<f32>, 
} 
impl RotationMatrix { 
    pub fn new() -> Self { 
        RotationMatrix { 
            axis: AxisSelection::I, 
            mat: arr2(&[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]), 
        } 
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}  
    pub fn newRot(&mut self, a: AxisSelection, ang: f32) -> Self { 
        match a { 
            AxisSelection::I => RotationMatrix::new(), 
            AxisSelection::X => RotationMatrix::Rx(ang), 
            AxisSelection::Y => RotationMatrix::Ry(ang), 
            AxisSelection::Z => RotationMatrix::Rz(ang), 

} }  
    pub fn Rx(theta: f32) -> Self { 
        let t = (theta * std::f32::consts::PI) / 180.0; 
        RotationMatrix { 
            axis: AxisSelection::X, 
            mat: arr2(&[ 
                [1.0, 0.0, 0.0], 
                [0.0, (t).cos(), -(t).sin()], 

            ]), 

[0.0, (t).sin(), (t).cos()], 

} }  
    pub fn Ry(theta: f32) -> Self { 
        let t = (theta * std::f32::consts::PI) / 180.0; 
        RotationMatrix { 
            axis: AxisSelection::Y, 
            mat: arr2(&[ 
                [(t).cos(), 0.0, (t).sin()], 
                [0.0, 1.0, 0.0], 

            ]), 

[-(t).sin(), 0.0, (t).cos()], 

} }  
    pub fn Rz(theta: f32) -> Self { 
        let t = (theta * std::f32::consts::PI) / 180.0; 
        RotationMatrix { 
            axis: AxisSelection::Z, 
            mat: arr2(&[ 
                [(t).cos(), -(t).sin(), 0.0], 
                [(t).sin(), (t).cos(), 0.0], 

    } 

  } 

  ]), 

[0.0, 0.0, 1.0], 

} // END impl RotationMatrix 
impl Display for RotationMatrix { 
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { 
        write!(f, "{}", self.mat) 
    } 

}  
impl std::ops::Mul for RotationMatrix { 
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    type Output = Array<f32, Ix2>; 
    fn mul(self, rhs: Self) -> Self::Output { 
        self.mat * rhs.mat 
    } 

}  
impl std::ops::Mul<Vector> for RotationMatrix { 
    type Output = Vector; 
    fn mul(self, rhs: Vector) -> Self::Output { 
        let mut v = Vector::new(); 
        v.vec = self.mat.dot(&rhs.vec); 
        v 

} }  
 
 
Rust	Algorithm	2	–	density/ga/src/lib.rs	 
//! 
//! File: density/ga/src/lib.rs 
//! Author: Jacob Davisson 
//! Last Modified: 13 May 2024 
//! Purpose: Provide a library with definitions, functions 
//!          trait implementations, etc. for handling 
//!          Geometric Algebra operations. 
//! Depends: ndarray::*; 
//!          std::fmt::Display; 
//!          std::fmt::Write; 
//! 
#![allow(non_snake_case)] 
#![allow(non_camel_case_types)] 
#![allow(unused)] 
#![allow(dead_code)] 
use std::fmt::{Debug, Display}; 
use std::ops::Mul; 
// No associated VectorPart enumeration, 
// as it should be plain to see that 
// positionally we have e1, e2, e3... 
#[derive(Copy, Clone, Debug)] 
pub struct Vector(f32, f32, f32); 
impl Vector { 
    pub fn new() -> Vector { 
        Vector(0.0, 0.0, 0.0) 
    } 
    pub fn set(&mut self, a: f32, b: f32, c: f32) -> () { 
        self.0 = a; 

self.1 = b;  
self.2 = c; }  
    pub fn setnew(a: f32, b: f32, c: f32) -> Vector { 
        let mut v: Vector = Vector::new(); 
        v.set(a, b, c); 
        v 
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}  
    pub fn rotate(&self, theta: f32, b: Bivector) -> Vector { 
        let t = (theta * std::f32::consts::PI) / 180.0; 
        let a: (f32, f32) = (t.cos(), t.sin()); 
        let b: (f32, f32) = (t.cos(), -t.sin()); 
        let vv: (f32, f32, f32) = (self.0, self.1, self.2); 
        let mut v: Vector = Vector::new(); 
        match b.1 { 
            BivectorParts::e12 => v.set( 
                self.0 * a.0.powi(2) + self.0 * a.1.powi(2), 
                self.1 * a.0.powi(2) + self.1 * a.1.powi(2), 
                self.2 * a.0.powi(2) + self.2 * a.1.powi(2), 
            ), // v(cos^2(theta) + sin^2(theta)) 
        } 

v }  
}  
impl Display for Vector { 
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { 
        write!(f, "<{}e1, {}e2, {}e3>", self.0, self.1, self.2) 
    } 

}  
#[derive(Copy, Clone, Debug)] 
pub enum BivectorParts { 
    e12, 

e23,  
e31, }  
#[derive(Copy, Clone, Debug)] 
pub struct Bivector(f32, BivectorParts); 
impl Bivector { 
    pub fn new() -> Bivector { 
        Bivector(0.0, BivectorParts::e12) 
    } 
    pub fn set(&mut self, s: f32, p: BivectorParts) -> () { 
        self.0 = s; 

self.1 = p; }  
    pub fn setnew(s: f32, p: BivectorParts) -> Bivector { 
        let mut b: Bivector = Bivector::new(); 
        b.set(s, p); 
        b 

} }  
impl Display for Bivector { 
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { 
        match self.1 { 
            BivectorParts::e12 => write!(f, "{}e12", self.0), 
            BivectorParts::e23 => write!(f, "{}e23", self.0), 
            BivectorParts::e31 => write!(f, "{}e31", self.0), 

} } } 
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Rust	Algorithm	3	–	density/bin/src/main.rs	 
//! 
//! File: density/bin/src/main.rs 
//! Author: Jacob Davisson 
//! Last Modified: 13 May 2024 
//! Purpose: Compiles to binary for executing the code 
//!          found in other libraries in this workspace. 
//! Depends: ndarray::*; 
//!          matrix::*; 
//!          std::f32::*; 
//! 
#![allow(non_snake_case)] 
#![allow(non_camel_case_types)] 
#![allow(unused)] 
#![allow(dead_code)] 
use matrix::*; 
use ndarray::*; 
use std::f32::*; 
fn main() { 
    let a: RotationMatrix = RotationMatrix::new(); 
    let Rx: RotationMatrix = RotationMatrix::Rx(45.0); 
    let Ry: RotationMatrix = RotationMatrix::Ry(45.0); 
    let Rz: RotationMatrix = RotationMatrix::Rz(45.0); 
    let mut v: Vector = Vector::new().set(1.0, 0.0, 0.0); 
    println!("{}", a); 
    println!("Vector v ::\n{}", v); 
    println!("Ry ::\n {}", &Ry); 
    let newvec = Rx * v; 
    println!("Rx * v = {}", newvec); 
    println!("Rotate v by Ry(45)::\n{}", Ry * newvec); 

}  
	
___________	

 
ixScrew	Mechanics	from	Hestenes’	paper	“Old	Wine	in	new	Bottles.” 
Screw	theory	with	geometric	algebra	enables	us	to	combine	the	rotational	and	translational	equations	of	
motion	for	a	rigid	body	into	a	single	equation.	The	kinematics	of	a	body	point	 

x	=	Dx0D
−1	
(64)	is	completely	characterized	by	the	displacement	spinor	D	=	D(t),	which	obeys	 

imply	the	invariants:	 
the	kinematical	equation	 
with	 

D	̇	=	
1

2
VD	(65)	V	=	−iω	+	ve,	(66)	 

11	 
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where	ω	is	the	angular	velocity	of	the	body	and	we	can	take	v	to	be	its	center-	of-mass	velocity.	It	follows	that	

x
.	
=	V	·	x	and	x	̇	=	ω	×	x	+	v.	 

A	comomentum	P	is	defined	for	the	body	by	
P	=MV	=iIω+mve∗	=il+pe∗.	(67)	 
This	defines	a	generalized	“mass	tensor”	M	in	terms	of	the	inertia	tensor	I	and	the	body	mass	m.	According	to	
the	transformation	equations	below,	the	comomentum	is	a	coscrew.	 
The	coforce	or	wrench	W	acting	on	a	rigid	body	is	defined	in	terms	of	the	torque	Γ	and	net	force	f	by	 
W	=iΓ+fe∗.	(68)	The	dynamical	equation	for	combined	rotational	and	translational	motion	then	 
conservation	law	for	kinetic	energy	 

K	=	
2

1
V	·P	=	

2

1
(ω·l+v·p).	(71)	A	change	of	reference	frame,	including	a	shift	of	base	point,	is	expressed	by	 

x	−→	x
′
=Ux=UxU

−1
.	(72)	We	consider	here	only	the	case	when	the	spinor	U	is	constant.	Then	(72)	induces	 

the	transformations	 

V
′	
=UV,	(73)	 

P	=	UP
′
.	(74)	Thus,	the	transformation	of	V	is	Covariant,	while	the	transformation	of	P	is	 

Contravariant.	Their	scalar	product	is	the	Invariant	
P	
′	
·	V	

′	
=	P	·	V.	(75)	 

There	is	much	more	about	all	this	in	[8],	[9]	and	[10],	especially	applications.	For	more	screw	theory,	see	[11]	
and	[12].		
___________	

x 
 “Understanding Geometric Algebra” by Kenichi Kanatani, CRC Press 2015. 
From Section 8.6, Pg 132 
Conformal geometry studies conformal transformations, for which two 
definitions exist. In a broad sense, they are transformations that preserve 
angles made by tangents to curves and surfaces at their intersections; in a 
narrow sense, they are transformations defined throughout the space, 
including infinity, that map spheres to spheres. To specifically mean the 
latter, they are referred to as spherical conformal transformations  or Mobius 
transformations. Here, we consider conformal transformations in the latter 
sense that map spheres to spheres and preserve the angles made by their 
tangent planes at their intersections; a plane is regarded as a sphere of 
infinite radius. Since the intersection of two spheres is a circle, circles are 
mapped to circles, and the angles made by their tangent lines at the 
intersections are preserved; a line is regarded as a circle of infinite radius.  
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… conformal transformations are defined by versors (products of vectors that 
have a certain grade) . ….. 
The set of all Conformal transformations constitutes a group of 
transformations, includes the following familiar subgroups: 
Similarities 
Rigid motions 
Rotations (note this is a compound reflection) 
Reflections 
Dilations (and contractions) 
Translations  
The identity 
  
… compositions of rigid motions and reflections are 
called isometries or Euclid transformations. They themselves constitute a 
closed subgroup of conformal transformations that preserve length; they 
include translations, rotations and the identity as its subgroups. 
  
From Section 8.7,  p141-142 
  
Conformal mappings are mappings that preserve angles between tangents. In 
2D they are given by an analytical (or regular or holomorphic) function over a 
domain of the complex plane, familiar to anyone taking a course in Complex 
Variables. 
__________ 

 xi 

 Old	Wine	in	New	Bottles:	A	new	algebraic	framework	for	
computational	geometry	David	Hestenes	 
Introduction	 
My	purpose	in	this	chapter	is	to	introduce	you	to	a	powerful	new	algebraic	model	for	Euclidean	space	with	all	
sorts	of	applications	to	computer-aided	geometry,	robotics,	computer	vision	and	the	like.	A	detailed	
description	and	analysis	of	the	model	is	soon	to	be	published	elsewhere	[1],	so	I	can	concentrate	on	highlights	
here,	although	with	a	slightly	different	formulation	that	I	find	more	convenient	for	applications.	Also,	I	can	
assume	that	this	audience	is	familiar	with	Geometric	Algebra,	so	we	can	proceed	rapidly	without	belaboring	
the	basics.	 
https://www.researchgate.net/publication/270492105_Old_wine_in_new_bot
tles	
 

https://www.researchgate.net/publication/270492105_Old_wine_in_new_bottles
https://www.researchgate.net/publication/270492105_Old_wine_in_new_bottles
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___________ 

 
 
 

xii Relational is not enough  

https://frankzliu.com/blog/a-gentle-introduction-to-vector-databases 

Data is everywhere. In the early days of the internet, data was mostly structured, and 
could easily be stored and managed in relational databases. Take, for example, a book 
database: 

ISBN Year Name Author 

0767908171 2003 A Short History of Nearly Everything Bill Bryson 

039516611X 1962 Silent Spring Rachel Carson 

0374332657 1998 Holes Louis Sachar 

…       

Storing and searching across table-based data such as the one shown above is exactly 
what relational databases were designed to do. In the example above, each row within 
the database represents a particular book, while the columns correspond to a particular 
category of information. When a user looks up book(s) through an online service, they 
can do so through any of the column names present within the database. For example, 
querying over all results where the author name is Bill Bryson returns all of Bryson’s 
books. 

As the internet grew and evolved, unstructured data (magazine articles, shared photos, 
short videos, etc.) became increasingly common. Unlike structured data, there is no easy 
way to store the contents of unstructured data within a relational database. Imagine, for 
example, trying to search for similar shoes given a collection of shoe pictures from 
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various angles; this would be impossible in a relational database since understanding 
shoe style, size, color, etc… purely from the image’s raw pixel values is impossible. 

This brings us to vector databases. The increasing ubiquity of unstructured data has led 
to a steady rise in the use of machine learning models trained to understand such 
data. word2vec, a natural language processing (NLP) algorithm which uses a neural 
network to learn word associations, is a well-known early example of this. 
The word2vec model is capable of turning single words (in a variety of languages, not 
just English) into a list of floating point values, or vectors. Due to the way models is 
trained, vectors which are close to each other represent words which are similar to each 
other, hence the term embedding vectors. We’ll get into a bit more detail (with code!) in 
the next section. 

Armed with this knowledge, it’s now clear what vector databases are used for: searching 
across images, video, text, audio, and other forms of unstructured data via 
their content rather than keywords or tags (which are often input manually by users or 
curators). When combined with powerful machine learning models, vector databases 
have the capability of revolutionizing semantic search and recommendation systems. 

Data UID1 Vector representation 

00000000 [-0.31, 0.53, -0.18, …, -0.16, -0.38] 

00000001 [ 0.58, 0.25, 0.61, …, -0.03, -0.31] 

00000002 [-0.07, -0.53, -0.02, …, -0.61, 0.59] 

…   

In the upcoming sections, I’ll share some information about why embedding vectors can 
be used to represent unstructured data, go over algorithms for indexing and searching 
across vector spaces, and present some key features a modern vector database must 
implement. 

x2vec: A new way to understand data 

 

https://frankzliu.com/blog/a-gentle-introduction-to-vector-databases#fn:1
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The idea of turning a piece of unstructured data into a list of numerical values is nothing 
new2. As deep learning gained steam in both academic and industry circles, new ways to 
represent text, audio, and images came to be. A common component of all these 
representations is their use of embedding vectors generated by trained deep neural 
networks. Going back to the example of word2vec, we can see that the generated 
embeddings contain significant semantic information. 

 
xiii From Hildenbrand: 
Why should you use a 5-dimensional geometric algebra if your problem is from the 3D real 
world? 
 
One reason is that problems can often be formulated more easily and intuitively in a higher 
number of dimensions. One advantage of CGA, for instance, is that points, spheres and 
planes are easily represented as vectors (linear combination of blades of grade 1). 
 
Geometric Operations can be expressed easily in Geometric Algebra. 
 
Duality: Geometric Algebra allows for division by geometric objects. This can sometimes 
transform a difficult problem into a simpler one. 
  

https://frankzliu.com/blog/a-gentle-introduction-to-vector-databases#fn:2

